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Abstract

We survey the foundations of nonlinearly constrained optimization methods, emphasiz-
ing general methods and highlighting their key components, namely, the local model and
global convergence mechanism. We then categorize current software packages for solving
constrained nonlinear optimization problems. The packages include interior-point methods,
sequential linear/quadratic programming methods, and augmented Lagrangian methods. For
every package we highlight the main methodological components and provide a brief sum-
mary of interfaces and availability. We also comment on termination conditions of nonlinear
solvers and provide a list of online optimization tools.
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1 Background and Introduction

Nonlinearly constrained optimization problems (NCOs) are an important class of problems with
a broad range of engineering, scientific, and operational applications. For ease of presentation, we
consider NCOs of the form

minimize
x

f(x) subject to c(x) = 0 and x ≥ 0, (1.1)

where the objective function, f : IRn → IR, and the constraint functions, c : IRn → IRm, are twice
continuously differentiable. We denote the multipliers corresponding to the equality constraints,
c(x) = 0, by y and the multipliers of the inequality constraints, x ≥ 0, by z ≥ 0. An NCO may also
have unbounded variables, upper bounds, or general range constraints of the form li ≤ ci(x) ≤ ui,
which we omit for the sake of simplicity.
∗Preprint ANL/MCS-P1729-0310
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2 Sven Leyffer and Ashutosh Mahajan

In general, one cannot solve (1.1) directly or explicitly. Instead, an iterative method is used that
solves a sequence of simpler, approximate subproblems to generate a sequence of approximate
solutions, {xk}, starting from an initial guess, x0. A simplified algorithmic framework for solving
(1.1) is as follows.

Given initial estimate x0 ∈ IRn, set k = 0;
while xk is not optimal do

repeat
Approximately solve and refine a local model of (1.1) around xk.

until an improved solution estimate xk+1 is found ;
Check whether xk+1 is optimal; set k = k + 1.

end

Algorithm 1: Framework for Nonlinear Optimization Methods

In this paper, we review the basic components of methods for solving NCOs. In particular,
we review the four fundamental components of Algorithm 1: the convergence test that checks for
optimal solutions or detects failure; the local model that computes an improved new iterate; the
globalization strategy that ensures convergence from remote starting points, by indicating whether
a new solution estimate is better than the current estimate; and the globalization mechanism that
truncates the step computed by the local model to enforce the globalization strategy, effectively
refining the local model.

Algorithms for NCOs are categorized by the choice they implement for each of these funda-
mental components. In the next section, we review the fundamental building blocks of methods
for nonlinearly constrained optimization.

Notation: Throughout this paper, we denote iterates by xk, k = 1, 2, . . ., and we use subscripts to
indicate functions evaluated at an iterate, for example, fk = f(xk) and ck = c(xk). We also denote
the gradients by gk = ∇f(xk) and the Jacobian by Ak = ∇c(xk). The Hessian of the Lagrangian is
denoted by Hk.

2 Convergence Test and Termination Conditions

We start by describing the convergence test, a common component among all NCO algorithms.
The convergence test also provides the motivation for many local models that are described next.
The convergence analysis of NCO algorithms typically provides convergence only to KKT points.
A suitable approximate convergence test is thus given by

‖c(xk)‖ ≤ ε and ‖gk −Akyk − zk‖ ≤ ε and ‖min(xk, zk)‖ ≤ ε, (2.1)

where ε > 0 is the tolerance and the min in the last expression corresponding to complementary
slackness is taken componentwise.
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In practice, it may not be possible to ensure convergence to an approximate KKT point, for
example, if the constraints fail to satisfy a constraint qualification (Mangasarian, 1969, Ch. 7). In
that case, we replace the second condition by

‖Akyk + zk‖ ≤ ε,

which corresponds to a Fritz-John point.

Infeasible Stationary Points Unless the NCO is convex or some restrictive assumptions are
made, methods cannot guarantee convergence even to a feasible point. Moreover, an NCO may
not even have a feasible point, and we are interested in a (local) certificate of infeasibility. In
this case, neither the local model nor the convergence test is adequate to achieve and detect con-
vergence. A more appropriate convergence test and local model can be based on the following
feasibility problem:

minimize
x

‖c(x)‖ subject to x ≥ 0, (2.2)

which can be formulated as a smooth optimization problem by introducing slack variables. Algo-
rithms for solving (2.2) are analogous to algorithms for NCOs, because the feasibility problem can
be reformulated as a smooth NCO by introducing additional variables. In general, we can replace
this objective by any weighted norm. A suitable convergence test is then

‖Akyk − zk‖ ≤ ε and ‖min(xk, zk)‖ ≤ ε,

where yk are the multipliers or weights corresponding to the norm used in the objective of (2.2).
For example, if we use the `1 norm, then yk ∈ {−1, 1}m depending on which side of the equality
constraint is active. The multipliers are readily computed as a by-product of solving the local
model.

3 Local Model: Improving a Solution Estimate

One key difference among nonlinear optimization methods is how the local model is constructed.
The goal of the local model is to provide a step that improves on the current iterate. We distinguish
three broad classes of local models: sequential linear models, sequential quadratic models, and
interior-point models. Models that are based on the augmented Lagrangian method are more
suitably described in the context of globalization strategies in Section 4.

3.1 Sequential Linear and Quadratic Programming

Sequential linear and quadratic programming methods construct a linear or quadratic approxi-
mation of (1.1) and solve a sequence of such approximations, converging to a stationary point.
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Sequential Quadratic Programming (SQP) Methods: SQP methods successively minimize a
quadratic model, mk(d), subject to a linearization of the constraints about xk (Han, 1977; Pow-
ell, 1978; Boggs and Tolle, 1995) to obtain a displacement d := x− xk.

minimize
d

mk(d) := gTk d+
1
2
dTHkd subject to ck +ATk d = 0, xk + d ≥ 0, (3.1)

where Hk ' ∇2L(xk, yk) approximates the Hessian of the Lagrangian and yk is the multiplier
estimate at iteration k. The new iterate is xk+1 = xk + d, together with the multipliers yk+1 of the
linearized constraints of (3.1). IfHk is not positive definite on the null-space of the active constraint
normals, then the QP is nonconvex, and SQP methods seek a local minimum of (3.1). The solution
of the QP subproblem can become computationally expensive for large-scale problems because the
null-space method for solving QPs requires the factorization of a dense reduced-Hessian matrix.
This bottleneck has led to the development of other methods that use LP solves in the local model,
and these approaches are described next.

Sequential Linear Programming (SLP) Methods: SLP methods construct a linear approxima-
tion to (1.1). In general, this LP will be unbounded, and SLP methods require the addition of a
trust region (discussed in more detail in the next section):

minimize
d

mk(d) = gTk d subject to ck +ATk d = 0, xk + d ≥ 0, and ‖d‖∞ ≤ ∆k, (3.2)

where ∆k > 0 is the trust-region radius. Griffith and Stewart (1961) used this method without a
trust region but with the assumption that the variables are bounded. In general, ∆k → 0 must
converge to zero to ensure convergence. SLP methods can be viewed as steepest descent methods
and typically converge only linearly. If, however there are exactly n active and linearly indepen-
dent constraint normals at the solution, then SLP reduces to Newton’s method for solving a square
system of nonlinear equations and converges superlinearly.

Sequential Linear/Quadratic Programming (SLQP) Methods: SLQP methods combine the ad-
vantages of the SLP method (fast solution of the LP) and SQP methods (fast local convergence) by
adding an equality-constrained QP to the SLP method (Fletcher and de la Maza, 1989; Chin and
Fletcher, 2003; Byrd et al., 2004). SLQP methods thus solve two subproblems: first, an LP is solved
to obtain a step for the next iteration and also an estimate of the active setAk :=

{
i : [xk]i + d̂i = 0

}
from a solution d̂ of (3.2). This estimate of the active set is then used to construct an equality-
constrained QP (EQP), on the active constraints,

minimize
d

qk(d) = gTk d+
1
2
dTHkd subject to ck +ATk d = 0, [xk]i + di = 0, ∀i ∈ Ak. (3.3)

If Hk is second-order sufficient (i.e., positive-definite on the null-space of the constraints), then
the solution of (3.3) is equivalent to the following linear system obtained by applying the KKT
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conditions to the EQP: Hk −Ak −Ik
ATk
ITk

( x

yA

)
=

 −gk +Hkxk

−ck
0

 ,

where Ik = [ei]i∈Ak
are the normals of the active inequality constraints. By taking a suitable basis

from the LP simplex solve, SLQP methods can ensure that [Ak : Ik] has full rank. Linear solvers
such as MA57 can also detect the inertia; and if Hk is not second-order sufficient, a multiple of the
identity can be added to Hk to ensure descent of the EQP step.

Sequential Quadratic/Quadratic Programming (SQQP) Methods: SQQP methods have recently
been proposed as SQP types of methods (Gould and Robinson, 2010, 2008). First, a convex QP
model constructed by using a positive-definite Hessian approximation is solved. The solution of
this convex QP is followed by a reduced inequality constrained model or an EQP with the exact
second derivative of the Lagrangian.

Theory of Sequential Linear/Quadratic Programming Methods. If Hk is the exact Hessian of
the Lagrangian and if the Jacobian of the active constraints has full rank, then SQP methods con-
verge quadratically near a minimizer that satisfies a constraint qualification and a second-order
sufficient condition (Boggs and Tolle, 1995). It can also be shown that, under the additional as-
sumption of strict complementarity, all four methods identify the optimal active set in a finite
number of iterations.

The methods described in this section are also often referred to as active-set methods, because
the solution of each LP or QP provides not only a suitable new iterate but also an estimate of the
active set at the solution.

3.2 Interior-Point Methods

Interior-point methods (IPMs) are an alternative approach to active-set methods. Interior-point
methods are a class of perturbed Newton methods that postpone the decision of which constraints
are active until the end of the iterative process. The most successful IPMs are primal-dual IPMs,
which can be viewed as Newton’s method applied to the perturbed first-order conditions of (1.1):

0 = Fµ(x, y, z) =

 ∇f(x)−∇c(x)T y − z
c(x)

Xz − µe

 , (3.4)

where µ > 0 is the barrier parameter, X = diag(x) is a diagonal matrix with x along its diagonal,
and e = (1, . . . , 1) is the vector of all ones. Note that, for µ = 0, these conditions are equivalent to
the first-order conditions except for the absence of the nonnegativity constraints x, z ≥ 0.

Interior-point methods start at an “interior” iterate x0, z0 > 0 and generate a sequence of in-
terior iterates xk, zk > 0 by approximately solving the first-order conditions (3.4) for a decreasing
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sequence of barrier parameters. Interior-point methods can be shown to be polynomial-time algo-
rithms for convex NLPs; see, for example, (Nesterov and Nemirovskii, 1994).

Newton’s method applied to the primal-dual system (3.4) around xk gives rise to the local
model,  Hk −Ak −I

ATk 0 0
Zk 0 Xk


 ∆x

∆y
∆z

 = −Fµ(xk, yk, zk), (3.5)

where Hk approximates the Hessian of the Lagrangian, ∇2Lk, and the step (xk+1, yk+1, zk+1) =
(xk, yk, zk) + (αx∆x, αy∆y, αz∆z) is safeguarded to ensure that xk+1, zk+1 > 0 remain strictly pos-
itive.

Relationship to Barrier Methods: Primal-dual interior-point methods are related to earlier bar-
rier methods (Fiacco and McCormick, 1990). These methods were given much attention in the
1960s but soon lost favor because of the ill-conditioning of the Hessian. They regained attention
in the 1980s after it was shown that these methods can provide polynomial-time algorithms for
linear programming problems. See the surveys (Wright, 1992; Forsgren et al., 2002) for further
material. Barrier methods approximately solve a sequence of barrier problems,

minimize
x

f(x)− µ
n∑
i=1

log(xi) subject to c(x) = 0, (3.6)

for a decreasing sequence of barrier parameters µ > 0. The first-order conditions of (3.6) are given
by

∇f(x)− µX−1e−A(x)y = 0 and c(x) = 0. (3.7)

Applying Newton’s method to this system of equations results in the following linear system:[
Hk + µX−2

k −Ak
ATk 0

](
∆x
∆y

)
= −

(
gk − µX−1

k e−Akyk
ck

)
.

Introducing first-order multiplier estimates Z(xk) := µX−1
k , which can be written as Z(xk)Xk =

µe, we obtain the system[
Hk + Z(xk)X−1

k −Ak
Ak 0

](
∆x
∆y

)
= −

(
gk − µX−1

k e−Akyk
ck

)
,

which is equivalent to the primal-dual Newton system (3.5), where we have eliminated

∆z = −X−1Z∆x− Ze− µX−1e.

Thus, the main difference between classical barrier methods and the primal-dual IPMs is that Zk
is not free for barrier methods but is chosen as the primal multiplier Z(xk) = µX−1

k . This freedom
in the primal-dual method avoids some difficulties with ill-conditioning of the barrier Hessian.
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Convergence of Barrier Methods: If there exists a compact set of isolated local minimizers of
(1.1) with at least one point in the closure of the strictly feasible set, then it follows that barrier
methods converge to a local minimum (Wright, 1992).

4 Globalization Strategy: Convergence from Remote Starting Points

The local improvement models of the preceding section guarantee convergence only in a small
neighborhood of a regular solution. Globalization strategies are concerned with ensuring conver-
gence from remote starting points to stationary points (and should not be confused with global
optimization). To ensure convergence from remote starting points, we must monitor the progress
of the local method. Monitoring is easily done in unconstrained optimization, where we can mea-
sure progress by comparing objective values. In constrained optimization, however, we must
take the constraint violation into account. Three broad classes of strategies exist: augmented La-
grangian methods, penalty and merit-function methods, and filter and funnel methods.

4.1 Augmented Lagrangian Methods

The augmented Lagrangian of (1.1) is given by

L(x, y, ρ) = f(x)− yT c(x) +
ρ

2
‖c(x)‖22, (4.1)

where ρ > 0 is the penalty parameter. The augmented Lagrangian is used in two modes to develop
algorithms for solving (1.1): by defining a linearly constrained problem or by defining a bound
constrained problem.

Linearly constrained Lagrangian methods: These methods successively minimize a shifted aug-
mented Lagrangian subject to a linearization of the constraints. The shifted augmented Lagrangian
is defined as

L(x, y, ρ) = f(x)− yT pk(x) +
ρ

2
‖pk(x)‖22, (4.2)

where pk(x) are the higher-order nonlinear terms at the current iterate xk, that is,

pk(x) = c(x)− ck −ATk (x− xk). (4.3)

This approach results in the following local model:

minimize
x

L(x, yk, ρk) subject to ck +ATk (x− xk) = 0, x ≥ 0. (4.4)

We note that if ck +ATk (x− xk) = 0, then minimizing the shifted augmented Lagrangian is equiv-
alent to minimizing the Lagrangian over these constraints. Linearly constrained, augmented La-
grangian methods solve a sequence of problems (4.4) for a fixed penalty parameter. Multipliers
are updated by using a first-order multiplier update rule,

yk+1 = yk − ρkc(xk+1), (4.5)

where xk+1 solves (4.4).
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Bound-constrained Lagrangian methods: These methods approximately minimize the augmented
Lagrangian,

minimize
x

L(x, yk, ρk) subject to x ≥ 0. (4.6)

The advantage of this approach is that efficient methods for bound-constrained optimization
can readily be applied, such as the gradient-projection conjugate-gradient approach (Moré and
Toraldo, 1991), which can be interpreted as an approximate Newton method on the active in-
equality constraints.

Global convergence is promoted by defining two forcing sequences, ωk ↘ 0, controlling the ac-
curacy with which every bound-constrained problems is solved, and ηk ↘ 0, controlling progress
toward feasibility of the nonlinear constraints. A typical bound-constrained Lagrangian method
can then be stated as follows:

Given an initial solution estimate (x0, y0), and an initial penalty parameter ρ0.
while xk is not optimal do

Find an ωk-optimal solution, xck of (4.6).
if ‖c(xck)‖ ≤ ηk then

Perform a first-order multiplier update: yk+1 = yk − ρkc(xck)
else

Increase penalty: ρk+1 = 10ρk
end
Set k = k + 1

end

Algorithm 2: Bound-Constrained Augmented Lagrangian Method.

Theory of Augmented Lagrangian Methods. Conn et al. (1991) show that a bound-constrained
Lagrangian method can globally converge if the sequence {xk} of iterates is bounded and if the
Jacobian of the constraints at all limit points of {xk} has column rank no smaller than m. Conn
et al. (1991) show that if some additional conditions are met, then their algorithm is R-linearly
convergent. Bertsekas (1996) shows that the method converges Q-linearly if {ρk} is bounded,
and superlinearly otherwise. Linearly constrained augmented Lagrangian methods can be made
globally convergent by adding slack variables to deal with infeasible subproblems (Friedlander
and Saunders, 2005).

4.2 Penalty and Merit Function Methods

Penalty and merit functions combine the objective function and a measure of the constraint viola-
tion into a single function whose local minimizers correspond to local minimizers of the original
problem (1.1). Convergence from remote starting points can then be ensured by forcing descent of
the penalty or merit function, using one of the mechanisms of the next section.
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Exact penalty functions are an attractive alternative to augmented Lagrangians and are defined
as

pρ(x) = f(x) + ρ‖c(x)‖,

where ρ > 0 is the penalty parameter. Most approaches use the `1 norm to define the penalty
function. It can be shown that a local minimizer, x∗, of pρ(x) is a local minimizer of problem (1.1)
if ρ > ‖y∗‖D, where y∗ are the corresponding Lagrange multipliers and ‖ · ‖D is the dual norm of
‖·‖ (i.e., the `∞-norm in the case of the `1 exact-penalty function); see, for example, (Fletcher, 1987,
Chapter 12.3). Classical approaches using pρ(x) have solved a sequence of penalty problems for
an increasing sequence of penalty parameters. Modern approaches attempt to steer the penalty
parameter by comparing the predicted decrease in the constraint violation to the actual decrease
over a step.

A number of other merit functions also exist. The oldest, the quadratic penalty function, f(x)+
ρ‖c(x)‖22, converges only if the penalty parameter diverges to infinity. Augmented Lagrangian
functions and Lagrangian penalty functions such as f(x) + yT c(x) + ρ‖c(x)‖ have also been used
to promote global convergence. A key ingredient in any convergence analysis is to connect the
local model to the merit function that is being used in a way that ensures a descent property of the
merit function; see Section 5.1.

4.3 Filter and Funnel Methods

Filter and funnel methods provide an alternative to penalty methods that does not rely on the use
of a penalty parameter. Both methods use step acceptance strategies that are closer to the original
problem, by separating the constraints and the objective function.

Filter methods: Filter methods keep a record of the constraint violation, hl := ‖c(xl)‖, and objec-
tive function value, fl := f(xl), for some previous iterates, xl, l ∈ Fk (Fletcher and Leyffer, 2002).
A new point is acceptable if it improves either the objective function or the constraint violation
compared to all previous iterates. That is, x̂ is acceptable if

f(x̂) ≤ fl − γhl or h(x̂) ≤ βhl, ∀l ∈ Fk,

where γ > 0, 0 < β < 1, are constants that ensure that iterates cannot accumulate at infeasible limit
points. A typical filter is shown in Figure 1 (left), where the straight lines correspond to the region
in the (h, f)-plane that is dominated by previous iterations and the dashed lines correspond to the
envelope defined by γ, β.

The filter provides convergence only to a feasible limit because any infinite sequence of iterates
must converge to a point, where h(x) = 0, provided that f(x) is bounded below. To ensure
convergence to a local minimum, filter methods use a standard sufficient reduction condition
from unconstrained optimization,

f(xk)− f(xk + d) ≥ −σmk(d), (4.7)
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where σ > 0 is the fraction of predicted decrease and mk(d) is the model reduction from the
local model. It makes sense to enforce this condition only if the model predicts a decrease in the
objective function. Thus, filter methods use the switching condition mk(d) ≥ γh2

k to decide when
(4.7) should be enforced. A new iterate that satisfies both conditions is called an f-type iterate,
and an iterate for which the switching condition fails is called an h-type iterate to indicate that it
mostly reduces the constraint violation. If a new point is accepted, then it is added to the current
iterate to the filter, Fk, if hk > 0 or if it corresponds to an h-type iterations (which automatically
satisfy hk > 0).

Funnel methods: The method of Gould and Toint (2010) can be viewed as a filter method with
just a single filter entry, corresponding to an upper bound on the constraint violation. Thus, the
filter contains only a single entry, (Uk,−∞). The upper bound is reduced during h-type iterations,
to force the iterates toward feasibility; it is left unchanged during f-type iterations. Thus, it is pos-
sible to converge without reducing Uk to zero (consistent with the observation that SQP methods
converge locally). A schematic interpretation of the funnel is given in Figure 1 (left).

Figure 1: The left figure shows a filter where the blue/red area corresponds to the points that are
rejected by the filter. The right figure shows a funnel around the feasible set.

4.4 Maratos Effect and Loss of Fast Convergence

One can construct simple examples showing that arbitrarily close to an isolated strict local min-
imizer, the Newton step will be rejected by the exact penalty function (Maratos, 1978), resulting
in slow convergence. This phenomenon is known as the Maratos effect. It can be mitigated by
computing a second-order correction step, which is a Newton step that uses the same linear sys-
tem with an updated right-hand side (Fletcher, 1987; Nocedal and Wright, 1999). An alternative
method to avoid the Maratos effect is the use of nonmonotone techniques that require descent
over only the last M iterates, where M > 1 is a constant.
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5 Globalization Mechanisms

In this section, we review two mechanisms to reduce the step that is computed by the local model:
line-search methods and trust-region methods. Both mechanisms can be used in conjunction with
any of the local models and any of the global convergence strategies, giving rise to a broad family
of algorithms. In Sections 7–9, we describe how these components are used in software for NCOs.

5.1 Line-Search Methods

Line-search methods enforce convergence with a backtracking line search along the direction s.
For interior-point methods, the search direction, s = (∆x,∆y,∆z), is obtained by solving the
primal-dual system (3.5). For SQP methods, the search direction is the solution of the QP (3.1), s =
d. It is important to ensure that the model produces a descent direction, e.g., ∇Φ(xk)T s < 0 for a
merit or penalty function Φ(x); otherwise, the line search may not terminate. A popular line search
is the Armijo search (Nocedal and Wright, 1999), described in Algorithm 3 for a merit function
Φ(x). The algorithm can be shown to converge to a stationary point, detect unboundedness, or
converge to a point where there are no directions of descent.

Given initial estimate x0 ∈ IRn, let 0 < σ < 1, and set k = 0;
while xk is not optimal do

Approximately solve a local model of (1.1) around xk to find a search direction s.
Make sure that s is a descent direction, e.g. ∇Φ(xk)T s < 0.
Set α0 = 1 and l = 0.
repeat

Set αl+1 = αl/2 and evaluate Φ(xk + αl+1s). Set l = l + 1.
until Φ(xk + αls) ≤ fk + αlσsT∇Φk ;
set k = k + 1.

end

Algorithm 3: (Armijo) Line-Search Method for Nonlinear Optimization

Line-search methods for filters can be defined in a similar way. Instead of checking descent in
the merit function, a filter method is used to check acceptance to a filter. Unlike merit functions,
filter methods do not have a simple definition of descent; hence, the line search is terminated
unsuccessfully once the step size αl becomes smaller than a constant. In this case, filter methods
switch to a restoration step, obtained by solving a local approximation of (2.2).

5.2 Trust-Region Methods

Trust-region methods explicitly restrict the step that is computed by the local model, by adding
a trust-region constraint of the form ‖d‖ ≤ ∆k to the local model. Most methods use an `∞-
norm trust region, which can be represented by bounds on the variables. The trust-region radius,
∆k > 0, is adjusted at every iteration depending on how well the local model agrees with the
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NCO, (1.1).

Given initial estimate x0 ∈ IRn, choose ∆0 > 0, and set k = 0;
while xk is not optimal do

Reset ∆k;
repeat

Approximately solve a local trust-region model with ‖d‖ ≤ ∆k.
if xk + d is sufficiently better than xk then

Accept the step: xk+1 = xk + d; possibly increase ∆k.
else

Reject the step and decrease the trust-region radius, e.g. ∆k = ∆k/2.
end

until an improved solution estimate xk+1 is found ;
Check whether xk+1 is optimal; set k = k + 1.

end

Algorithm 4: Trust-Region Methods for Nonlinear Optimization

Trust-region methods are related to regularization techniques, which add a multiple of the
identity matrix, σkI , to the Hessian, Hk. Locally, the solution of the regularized problem is equiv-
alent to the solution of a trust-region problem with an `2 trust-region.

6 Nonlinear Optimization Software: Summary

Software for nonlinearly constrained optimization can be applied to problems that are more gen-
eral than (1.1). In particular, solvers take advantage of linear constraints or simple bounds. Thus,
a more appropriate model problem is of the form

minimize
x

f(x)

subject to lc ≤ c(x) ≤ uc
lA ≤ ATx ≤ uA
lx ≤ x ≤ ux,

(6.1)

where the objective function, f : IRn → IR, and the constraint functions, ci : IRn → IR, for
i = 1, . . . ,m, are twice continuously differentiable. The bounds, lc, lA, lx, uc, uA, ux, can be either
finite or infinite Equality constraints are modeled by setting lj = uj for some index j. Maxi-
mization problems can be solved by multiplying the objective by −1 (most solvers handle this
transformation internally).

NCO solvers are typically designed to work well for a range of other optimization problems
such as solving a system of nonlinear equations (most methods reduce to Newton’s method in
this case), bound-constrained problems, and LP or QP problems. In this survey, we concentrate
on solvers that can handle general NCO problems possibly involving nonconvex functions.

Methods for solving (6.1) are iterative and contain the following four basic components: a local
model that approximates (6.1), a global convergence strategy to promote convergence from remote
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starting points, a global convergence mechanism to force improvement in the global convergence
strategy, and a convergence test to detect the type of limit point that is reached (see Section 2).
Solvers for NCO are differentiated by how each of these key ingredients is implemented. In addi-
tion there are a number of secondary distinguishing factors such as licensing (open-source versus
commercial or academic), API and interfaces to modeling languages, sparse or dense linear al-
gebra, programming language (Fortran/C/MATLAB), and compute platforms on which a solver
can run.

The next sections list some solvers for NCOs, summarizing their main characteristics. A short
overview can be found in Table 1. We distinguish solvers mainly by the definition of their local
model.

7 Interior-Point Solvers

Interior-point methods approximately solve a sequence of perturbed KKT systems, driving a bar-
rier parameter to zero. Interior-point methods can be regarded as perturbed Newton methods
applied to the KKT system in which the primal/dual variables are kept positive.

7.1 CVXOPT

Algorithmic Methodology: CVXOPT (Dahl and Vandenberghe, 2010a) is a software package for
convex optimization, with interfaces for linear algebra routines (BLAS and LAPACK), Fourier trans-
forms (FFTW), system of equalities (CHOLMOD, UMFPACK), and other solvers (GLPK, MOSEK
and DSDP5). It uses an interior-point barrier method that approximately solves a sequence of
perturbed KKT systems in each step. Global convergence relies on the convergence of the barrier
method and does not generalize to nonconvex problems.

Software and Technical Details: CVXOPT is available under GPL license from the CVXOPT
webpage (Dahl and Vandenberghe, 2010b). It is implemented in Python. It can be used with the
interactive Python interpreter, on the command line by executing Python scripts, or integrated in
other software via Python extension modules. Existing Python classes can be used for matrices
and arithmetic to input the problem.

7.2 IPOPT

Algorithmic Methodology: IPOPT is a line-search filter interior-point method (Wächter and
Biegler, 2005b,a; Wächter and Biegler, 2006). The outer loop approximately minimizes a sequence
of nonlinearly (equality) constrained barrier problems for a decreasing sequence of barrier pa-
rameters. The inner loop uses a line-search filter SQP method to approximately solve each bar-
rier problem. Global convergence of each barrier problem is enforced through a line-search filter
method, and the filter is reset after each barrier parameter update. Steps are computed by solving
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Table 1: NCO Software Overview.

Name Model Global Method Interfaces Language

ALGENCAN Aug. Lag. augmented Lagrangian AMPL, C/C++, CUTEr,
Java, MATLAB, Octave,
Python, R

f77

CONOPT GRG/SLQP line-search AIMMS, GAMS Fortran
CVXOPT IPM only convex Python Python
FilterSQP SQP filter/trust region AMPL, CUTEr, f77 Fortran77
GALAHAD Aug. Lag. nonmonotone/

augmented Lagrangian
CUTEr, Fortran Fortran95

IPOPT IPM filter/line search AMPL, CUTEr, C, C++, f77 C++
KNITRO IPM penalty-barrier/

trust region
AIMMS, AMPL, GAMS,
Mathematica, MATLAB,
MPL, C, C++, f77, Java,
Excel

C++

KNITRO SLQP penalty/trust region s.a. C++
LANCELOT Aug. Lag. augmented Lagrangian/

trust region
SIF, AMPL, f77 Fortran77

LINDO GRG/SLP only convex C, MATLAB, LINGO
LOQO IPM line search AMPL, C, MATLAB C
LRAMBO SQP `1 exact penalty/

line search
C C/C++

MINOS Aug. Lag. augmented Lagrangian AIMMS, AMPL, GAMS,
MATLAB, C, C++, f77

Fortran77

NLPQLP SQP augmented Lagrangian/
line-search

C, f77, MATLAB Fortran77

NPSOL SQP penalty Lagrangian/
line search

AIMMS, AMPL, GAMS,
MATLAB, C, C++, f77

Fortran77

PATH LCP line search AMPL C
PENNON Aug. Lag. line search AMPL, MATLAB C
SNOPT SQP penalty Lagrangian/

line search
AIMMS, AMPL, GAMS,
MATLAB, C, C++, f77

Fortran77

SQPlab SQP penalty Lagrangian/
line search

MATLAB MATLAB

a primal-dual system, (3.5), corresponding to the KKT conditions of the barrier problem. The al-
gorithm controls the inertia of this system by adding δI (δ > 0) to the Hessian of the Lagrangian,
ensuring descent properties. The inner iteration includes second-order correction steps and mech-
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anisms for switching to a feasibility restoration if the step size becomes too small. The solver has
an option for using limited-memory BFGS updates to approximate the Hessian of the Lagrangian.

Software and Technical Details: The solver is written in C++ and has interfaces to C, C++, For-
tran, AMPL, CUTEr, and COIN-OR’s NLPAPI. It requires BLAS, LAPACK, and a sparse indefinite
solver (MA27, MA57, PARDISO, or WSMP). The user must provide function and gradient infor-
mation, and possibly the Hessian of the Lagrangian (in sparse format). By using the PARDISO
(Schenk et al., 2007) parallel linear solver, IPOPT can solve large problems on shared-memory
multiprocessors. IPOPT is available on COIN-OR under Common Public License at its website
(Wächter and Biegler, 2010).

7.3 KNITRO

KNITRO includes both IPM and SLQP methods. The SLQP version is described in the next section.

Algorithmic Methodology: KNITRO implements a trust-region interior-point penalty-barrier
method (Byrd et al., 1999, 2000, 2006). It approximately solves a sequence of barrier subproblems
for a decreasing sequence of barrier parameters, using a trust region and penalty-barrier function
to promote global convergence. The barrier subproblems are solved by a sequence of linearized
primal-dual equations, (3.5). KNITRO has two options for solving the primal-dual system: direct
factorization of the system of equations and preconditioned conjugate gradient (PCG) method.
The PCG method solves the indefinite primal-dual system by projecting onto the null space of
the equality constraints. KNITRO also includes modules for solving mixed-integer nonlinear op-
timization problems and optimization problems with simple complementarity constraints. In ad-
dition, it contains crossover techniques to obtain an active set from the solution of the IPM solve
and a multistart heuristic for nonconvex NCOs.

Software and Technical Details: KNITRO is written in C++. It has interfaces to a range of mod-
eling languages, including AIMMS, AMPL, GAMS, Mathematica, MATLAB, and MPL. In addi-
tion, KNITRO has interfaces to C, C++, Fortran, Java, and Excel. It offers callback and reverse
communication interfaces. KNITRO requires MA57 to solve the indefinite linear systems of equa-
tions. KNITRO is available from Zienna Inc., and the user’s manual is available online (Waltz and
Plantenga, 2009).

7.4 LOQO

Algorithmic Methodology: LOQO (Vanderbei and Shanno, 1999) uses an infeasible primal-dual
interior-point method for solving general nonlinear problems. The inequality constraints are
added to the objective by using a log-barrier function. Newton’s method is used to obtain a
solution to the system of nonlinear equations that is obtained by applying first-order necessary
conditions to this barrier function. The solution of this system provides a search direction, and
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a merit function is used to find the next iterate in this direction. The merit function is the bar-
rier function and an additional `2 norm of the violation of constraints. The exact Hessian of the
Lagrangian is used in the Newton’s method. When the problem is nonconvex, this Hessian is
perturbed by adding to it the matrix δI , where I is an identity matrix and δ > 0 is chosen so that
the perturbed Hessian is positive definite. This perturbation ensures that if the iterates converge,
they converge to a local minimum.

Software and Technical Details: LOQO can be used to solve problems written in AMPL. The
user can also implement functions in C and link to the LOQO library. LOQO can also read files in
MPS format for solving LPs. A MATLAB interface for LOQO is available for LPs, QPs, and second-
order cone programs. The library and binary files are available for a license fee at its homepage
(Vanderbei, 2010a), while a limited student version is available freely. A user manual provides
instructions on installing and using LOQO.

8 Sequential Linear/Quadratic Solvers

Sequential linear/quadratic solvers solve a sequence of LP and/or QP subproblems. This class of
solvers is also referred to as active-set methods, because they provide an estimate of the active set
at every iteration. Once the active set settles down, these methods become Newton methods on
the active constraints (except SLP).

8.1 CONOPT

Algorithmic Methodology: CONOPT (Drud, 1985, 2007) implements three active-set methods.
The first is a gradient projection method that projects the gradient of the objective onto a lineariza-
tion of the constraints and makes progress toward the solution by reducing the objective. The
second variant is an SLP method, and the third is an SQP method. CONOPT includes algorithmic
switches that automatically detect which method is preferable. It also exploits triangular parts
of the Jacobian matrix and linear components of the Jacobian to reduce the sparse factorization
overhead. CONOPT is a line-search method.

Software and Technical Details: CONOPT has interfaces to GAMS and AIMMS and is available
from either GAMS or AIMMS.

8.2 FilterSQP

Algorithmic Methodology: FilterSQP (Fletcher and Leyffer, 1998) implements a trust-region
SQP method. Convergence is enforced with a filter, whose components are the `1-norm of the
constraint violation, and the objective function. The solver starts by projecting the user-supplied
initial guess onto the linear part of the feasible set and remains feasible with respect to the linear
constraints. It uses an indefinite QP solver that finds local solutions to problems with negative
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curvature. The solver switches to a feasibility restoration phase if the local QP model becomes
inconsistent. During the restoration phase, a weighted sum of the constraint violations is mini-
mized by using a filter SQP trust-region approach. The restoration phase either terminates at a
local minimum of the constraint violation or returns to the main algorithm when a feasible local
QP model is found. FilterSQP computes second-order correction steps if the QP step is rejected by
the filter.

Software and Technical Details: The solver is implemented in Fortran77 and has interfaces to
AMPL, CUTEr, and Fortran77. The code requires subroutines to evaluate the problem functions,
their gradients, and the Hessian of the Lagrangian (provided by AMPL and CUTEr). It uses BQPD
(Fletcher, 1999) to solve the possibly indefinite QP subproblems. BQPD is a null-space active-set
method and has modules for sparse and dense linear algebra with efficient and stable factorization
updates. The code is licensed by the University of Dundee.

8.3 KNITRO

Algorithmic Methodology: In addition to the interior point-methods (see Section 7.3), KNITRO
implements an SLQP algorithm (Fletcher and de la Maza, 1989; Byrd et al., 2004). In each iteration,
an LP that approximates the `1 exact-penalty problem is solved to determine an estimate of the
active set. Those constraints in the LP that are satisfied as equalities are marked as active and are
used to set up an equality-constrained QP (EQP), (3.3), whose objective is a quadratic approxi-
mation of the Lagrangian of (6.1) at the current iterate. An `2-norm trust-region constraint is also
added to this QP. The solution of the LP and the EQP are then used to find a search direction (Byrd
et al., 2006, 2004). A projected conjugate-gradient method is used to solve the EQP. The penalty
parameter ρk is updated to ensure sufficient decrease toward feasibility.

Software and Technical Details: The SLQP method of KNITRO requires an LP solver and can
be linked to CLP. For other details, see Section 7.3. This active-set algorithm is usually preferable
for rapidly detecting infeasible problems and for solving a sequence of closely related problems.

8.4 LINDO

Algorithmic Methodology: LINDO provides solvers for a variety of problems including NCOs.
Its nonlinear solver implements an SLP algorithm and a generalized gradient method. It pro-
vides options to randomly select the starting point and can estimate derivatives by using finite
differences.

Software and Technical Details: LINDO (LINDO Systems Inc., 2010a) provides interfaces for
programs written in languages such as C and MATLAB. It can also read models written in LINGO.
The full version of the software can be bought online, and a limited trial version is available for
free (LINDO Systems Inc., 2010b).
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8.5 LRAMBO

Algorithmic Methodology: LRAMBO is a total quasi-Newton SQP method. It approximates both
the Jacobian and the Hessian by using rank-1 quasi-Newton updates. It enforces global conver-
gence through a line search on an `1-exact penalty function. LRAMBO requires as input only
an evaluation program for the objective and the constraints. It combines automatic differentia-
tion and quasi-Newton updates to update factors of the Jacobian, and it computes updates of the
Hessian. Details can be found in (Griewank et al., 2007).

Software and Technical Details: LRAMBO uses the NAG subroutine E04NAF to solve the QP
subproblems. It also requires ADOL-C (Griewank et al., 1996; Griewank and Walther, 2004) for
the automatic differentiation of the problem functions. LRAMBO is written in C/C++.

8.6 NLPQLP

Algorithmic Methodology: NLPQLP is an extension of the SQP solver NLPQL (Schittkowski,
1985) that implements a nonmonotone line search to ensure global convergence. It uses a quasi-
Newton approximation of the Hessian of the Lagrangian, which is updated with the BFGS for-
mula. A nonmonotone line search is used to calculate the step length that minimizes an aug-
mented Lagrangian merit function.

Software and Technical Details: NLPQLP is implemented in Fortran. The user or the interface
is required to evaluate the function values of the objective and constraints. Derivatives, if unavail-
able, can be estimated by using finite differences. NLPQLP can evaluate these functions and also
the merit function on a distributed memory system. A user guide with documentation, algorithm
details, and examples is available (Schittkowski, 2009). NLPQLP can be obtained under academic
and commercial license from its website.

8.7 NPSOL

Algorithmic Methodology: NPSOL (Gill et al., 1998) solves general nonlinear problems by using
an SQP algorithm with a line search on the augmented Lagrangian. In each major iteration, a
QP subproblem is solved whose Hessian is a quasi-Newton approximation of the Hessian of the
Lagrangian using a dense BFGS update.

Software and Technical Details: NPSOL is implemented in Fortran, and the library can be called
from Fortran and C programs and from modeling languages such as AMPL, GAMS, AIMMS,
and MATLAB. The user or the interface must provide routines for evaluating functions and their
gradients. If a gradient is not available, NPSOL can estimate it by using finite differences. It treats
all matrices as dense and hence may not be efficient for large-sparse problems. NPSOL can be
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warm started by specifying the active constraints and multiplier estimates for the QP. NPSOL is
available under commercial and academic licenses from Stanford Business Software Inc.

8.8 PATHNLP

Algorithmic Methodology: PATH (Dirkse and Ferris, 1995; Ferris and Munson, 1999) solves
mixed complementarity problems (MCPs). PATHNLP automatically formulates the KKT con-
ditions of an NLP, (6.1), specified in GAMS as an MCP and then solves this MCP using PATH. The
authors note that this approach is guaranteed only to find stationary points and does not distin-
guish between local minimizers and maximizers for nonconvex problems. Thus, it works well for
convex problems. At each iteration, PATH solves a linearization of the MCP problem to obtain
a Newton point. It then performs a search in the direction of this point to find a minimizer of a
merit function. If this direction is not a descent direction, it performs a steepest descent step in the
merit function to find a new point.

Software and Technical Details: The PATHNLP is available only through GAMS (Dirkse and
Ferris, 2010b). The PATH solver is implemented in C and C++ (Dirkse and Ferris, 2010a).

8.9 SNOPT

Algorithmic Methodology: SNOPT (Gill et al., 2006a) implements an SQP algorithm much like
NPSOL, but it is suitable for large, sparse problems as well. The Hessian of the Lagrangian is
updated by using limited-memory quasi-Newton updates. SNOPT solves each QP using SQOPT
(Gill et al., 2006b), which is a reduced-Hessian active-set method. It includes an option for using
a projected conjugate gradient method rather than factoring the reduced Hessian. SNOPT starts
by solving an “elastic program” that minimizes the constraint violation of the linear constraints
of (6.1). The solution to this program is used as a starting point for the major iterations. If a QP
subproblem is found to be infeasible or unbounded, then SNOPT tries to solve an elastic problem
that corresponds to a smooth reformulation of the `1-exact penalty function The solution from a
major iteration is used to obtain a search direction along which an augmented Lagrangian merit
function is minimized.

Software and Technical Details: SNOPT is implemented in Fortran77 and is compatible with
newer Fortran compilers. All functions in the SNOPT library can be used in parallel or by multiple
threads. It can be called from other programs written in C and Fortran and by packages such as
AMPL, GAMS, AIMMS, and MATLAB. The user or the interface has to provide routines that
evaluate function values and gradients. When gradients are not available, SNOPT uses finite
differences to estimate them. SNOPT can also save basis files that can be used to save the basis
information to warm start subsequent QPs. SNOPT is available under commercial and academic
licenses from Stanford Business Software Inc.
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8.10 SQPlab

Algorithmic Methodology: SQPlab (Gilbert, 2009) was developed as a laboratory for testing
algorithmic options of SQP methods (Bonnans et al., 2006). SQPlab implements a line-search
SQP method that can use either exact Hessians or a BFGS approximation of the Hessian of the
Lagrangian. It maintains positive definiteness of the Hessian approximation using the Wolfe
or Powell condition. SQPlab uses a Lagrangian penalty function, pσ(x, y) = f(x) + yTc c(x) +
σ‖max{0, c(x)− uc, lc − c(x)}‖1, to promote global convergence. SQPlab has a feature that allows
it to treat discretized optimal control constraints specially. The user can specify a set of equality
constraints whose Jacobian has uniformly full rank (such as certain discretized optimal-control
constraints). SQPlab then uses these constraints to eliminate the state variables. The user needs to
provide only routines that multiply a vector by the inverse of the control constraints.

Software and Technical Details: SQPlab is written in MATLAB and requires quadprog.m from
the optimization toolbox. The user must provide a function simulator to evaluate the functions
and gradients. A smaller version is also available that does not require quadprog.m but instead
uses qpal.m, an augmented Lagrangian QP solver for medium-sized convex QPs. All solvers are
distributed under the Q public license from INRIA, France (Gilbert, 2010).

9 Augmented Lagrangian Solvers

Augmented Lagrangian methods solve (6.1) by a sequence of subproblems that minimize the aug-
mented Lagrangian, either subject to a linearization of the constraints or as a bound-constrained
problem.

9.1 ALGENCAN

Algorithmic Methodology: ALGENCAN is a solver based on an augmented Lagrangian-type
algorithm (Andreani et al., 2007, 2008) in which a bound-constrained problem is solved in each
iteration. The objective function in each iteration is the augmented Lagrangian of the original
problem. This subproblem is solved by using a quasi-Newton method. The penalty on each
constraint is increased if the previous iteration does not yield a better point.

Software and Technical Details: ALGENCAN is written in Fortran77, and interfaces are avail-
able for AMPL, C/C++, CUTEr, JAVA, MATLAB, Octave, Python, and R. The bound-constrained
problem in each iteration is solved by using GENCAN, developed by the same authors. ALGEN-
CAN and GENCAN are freely available under the GNU Public License from the TANGO project
webpage (Martinez and Birgin, 2010).
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9.2 GALAHAD

Algorithmic Methodology: GALAHAD (Gould et al., 2004b) contains a range of solvers for
large-scale nonlinear optimization. It includes LANCELOT B, an augmented Lagrangian method
with a nonmonotone descend condition; FILTRANE, a solver for feasibility problems based on a
multi-dimensional filter (Gould et al., 2004a); and interior-point and active-set methods for solv-
ing large-scale quadratic programs (QPs). GALAHAD also contains a presolve routine for QPs
(Gould and Toint, 2004) and other support routines.

Software and Technical Details: GALAHAD is a collection of thread-safe Fortran95 packages
for large-scale nonlinear optimization. It is available in source form at (Gould et al., 2002). GALA-
HAD has links to CUTEr, and Fortran.

9.3 LANCELOT

Algorithmic Methodology: LANCELOT (Conn et al., 1992) is a large-scale implementation of a
bound-constrained augmented Lagrangian method. It approximately solves a sequence of bound-
constrained augmented Lagrangian problems by using a trust-region approach. Each trust-region
subproblem is solved approximately: first, the solver identifies a Cauchy-point to ensure global
convergence, and then it applies conjugate-gradient steps to accelerate the local convergence.
LANCELOT provides options for a range of quasi-Newton Hessian approximations suitable for
large-scale optimization by exploiting the group-partial separability of the problem functions.

Software and Technical Details: LANCELOT is written in standard ANSI Fortran77 and has
been interfaced to CUTEr (Bongartz et al., 1995) and AMPL. The distribution includes installation
scripts for a range of platforms in single and double precision. LANCELOT is available freely
from Rutherford Appleton Laboratory, UK (Conn et al., 2010).

9.4 MINOS

Algorithmic Methodology: MINOS (Murtagh and Saunders, 1998) uses a projected augmented
Lagrangian for solving general nonlinear problems. In each “major iteration” a linearly con-
strained nonlinear problem is solved where the linear constraints constitute all the linear con-
straints of (6.1) and also linearizations of nonlinear constraints. This problem is in turn solved
iteratively by using a reduced-gradient algorithm along with a quasi-Newton algorithm. The
quasi-Newton algorithm provides a search direction along which a line search is performed to
improve the objective function and reduce the infeasibilities. MINOS does not guarantee conver-
gence from any starting point. The user should therefore specify a starting point that is “close
enough” for convergence. The user can also modify other parameters such as the penalty param-
eter in augmented Lagrangian to control the algorithm.
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Software and Technical Details: MINOS is implemented in Fortran. The library can be called
from Fortran and C programs and interfaces such as AMPL, GAMS, AIMMS, and MATLAB. The
user must input routines for the function and gradient evaluations. If a gradient is not available,
MINOS estimates it by using finite differences. MINOS is available under commercial and aca-
demic licenses from Stanford Business Software Inc.

9.5 PENNON

Algorithmic Methodology: PENNON (Kocv̌ara and Stingl, 2003) is an augmented Lagrangian
penalty-barrier method. In addition to standard NCOs, it can handle semidefinite NCOs that in-
clude a semidefiniteness constraint on matrices of variables. PENNON represents the semidefiniteness
constraint by computing an eigenvalue decomposition and adds a penalty-barrier for each eigen-
value to the augmented Lagrangian. It solves a sequence of unconstrained optimization problems
in which the inequality constraints appear in barrier functions and the equality constraints in
penalty functions. Every unconstrained minimization problem is solved with Newton’s method.
The solution of this problem provides a search direction along which a suitable merit function is
minimized. Even though the algorithm has not been shown to converge for nonconvex problems,
it has been reported to work well for several problems.

Software and Technical Details: PENNON can be called from either AMPL or MATLAB. The
user manual (Kocv̌ara and Stingl, 2008) provides instructions for input of matrices in sparse format
when using AMPL. PENNON includes both sparse factorizations using the algorithm in (Ng and
Peyton, 1993) and dense factorization using LAPACK. Commercial licenses and a free academic
license are available from PENOPT-GbR.

10 Termination of NCO Solvers

Solvers for NCOs can terminate in a number of ways. Normal termination corresponds to a KKT
point, but solvers can also detect (locally) infeasible NCOs and unboundedness. Some solvers also
detect failure of constraint qualifications. Solvers also may terminate because of errors, and we
provide some simple remedies.

10.1 Normal Termination at KKT Points

Normal termination corresponds to termination at an approximate KKT point, that is, a point at
which the norm of the constraint violation, the norm of the first-order necessary conditions, and
the norm of the complementary slackness condition, (2.1), are less than a user-specified tolerance.
Some solvers divide the first-order conditions of (2.1) by the modulus of the largest multiplier. If
the problem is convex (and feasible), then the solution corresponds to a global minimum of (6.1).
Many NCO solvers include sufficient decrease conditions that make it less likely to converge to
local maxima or saddle points if the problem is nonconvex.
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10.2 Termination at Other Critical Points

Unlike linear programming solvers, NCO solvers do not guarantee global optimality for general
nonconvex NCOs. Even deciding whether a problem is feasible or unbounded corresponds to a
global optimization problem. Moreover, if a constraint qualification fails to hold, then solvers may
converge to critical points that do not correspond to KKT points.

Fritz-John (FJ) Points. This class of points corresponds to first-order points at which a constraint
qualification may fail to hold. NCO solvers adapt their termination criterion by dividing the
stationarity condition by the modulus of the largest multiplier. This approach allows convergence
to FJ points that are not KKT points. We note that dividing the first-order error is equivalent to
scaling the objective gradient by a constant 0 ≤ α ≤ 1. As the multipliers diverge to infinity, this
constant converges to α→ 0, giving rise to an FJ point.

Locally Inconsistent Solutions. To prove that an NCO is locally inconsistent requires the (lo-
cal) solution of a feasibility problem, in which a norm of the nonlinear constraint residuals is
minimized subject to the linear constraints; see (2.2). A KKT point of this problem provides a
certificate that (6.1) is locally inconsistent. There are two approaches to obtaining this certificate.
Filter methods switch to a feasibility restoration phase if either the stepsize becomes too small or
the LP/QP subproblem becomes infeasible. Penalty function methods do not switch but drive the
penalty parameter to infinity.

Unbounded Solutions. Unlike the case of linear programming where a ray along the direction
of descent is necessary and sufficient to prove that the instance is unbounded, it is difficult to
check whether a given nonlinear program is unbounded. Most NCO solvers use a user supplied
lower bound on the objective and terminate if they detect a feasible point with a lower objective
value than the lower bound.

10.3 Remedies If Things Go Wrong

If a solver stops at a point where the constraint qualifications appears to fail (indicated by large
multipliers) or where the nonlinear constraints are locally inconsistent or at a local and not global
minimum, then one can restart the solver procedure from a different initial point. Some solvers
include automatic random restarts.

Another cause for failure is errors in the function, gradient, or Hessian evaluation (e.g., IEEE
exceptions). Some solvers provide heuristics that backtrack if IEEE exceptions are encountered
during the iterative process. In many cases, IEEE exceptions occur at the initial point, and back-
tracking cannot be applied. It is often possible to reformulate the nonlinear constraints to avoid
IEEE exceptions. For example, log(x3

1 + x2) will cause IEEE exceptions if x3
1 + x2 ≤ 0. Adding the

constraint x3
1 + x2 ≥ 0 does not remedy this problem, because nonlinear constraints may not be

satisfied until the limit. A better remedy is to introduce a nonnegative slack variable, s ≥ 0, and
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the constraint s = x3
1 + x2 and then replace log(x3

1 + x2) by log(s). Many NCO solvers will honor
simple bounds (and interior-point solvers guarantee s > 0), so this formulation avoids some IEEE
exceptions.

11 Calculating Derivatives

All solvers described above expect either the user or the modeling environment (AMPL, GAMS,
etc.) to provide first-order and sometimes second-order derivatives. Some solvers can estimate
first-order derivatives by finite differences. If the derivatives are not available or if their estimates
are not reliable, one can use several automatic differentiation (AD) tools that are freely available.
We refer the readers to Griewank (2000) for principles and methods of AD and to Moré (2000) for
using AD in nonlinear optimization. AD tools include ADOL-C (Griewank and Walther, 2004);
ADIC, ADIFOR, and OpenAD (Hovland et al., 2009); and Tapenade (Hascoët and Pascual, 2004).

12 Web Resources

In addition to a range of NCO solvers that are available online, there exist an increasing num-
ber of web-based resources for optimization. The NEOS server for optimization (Czyzyk et al.,
1998; NEOS, 2003) allows users to submit optimization problems through a web interface, using
a range of modeling languages. It provides an easy way to try out different solvers. The NEOS
wiki (Leyffer and Wright, 2008) provides links to optimization case studies and background on
optimization solvers and problem classes. The COIN-OR project (COINOR, 2009) is a collection
of open-source resources and tool for operations research, including nonlinear optimization tools
(IPOPT and ADOL-C). A growing list of test problems for NCOs includes the CUTEr collection
(Gould et al., 2010), Bob Vanderbei’s collection of testproblems (Vanderbei, 2010b), the COPS test-
set (Dolan et al., 2010), and the GAMS model library (GAMS, 2010). The NLP-FAQ (Fourer, 2010)
provides online answers to questions on nonlinear optimization.
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